
'AO-AIlS 916 STATE UNdIV OF NEWI YORK AT BUFFALO AMHERST OROtJP FOR -- ETC F/6 9/
THE ADVICE-TAJER/INO4IRER.(UP
DEC 01 D L SICHEMAN AFOSR-81-0920

UNCLASSIFIED TR-193 AFOSR-TR-92-0094 MIL

IND

* 1111 ~1 2 5

11111-1.2
~ 36

111111 1

MICROCOPY RESOLUTION TEST CHART
NAT IONAL BURLALJ OF STANDtROS [963-A

AFOSR -TR 02-0 0 94

THE ADVICE-TAKER/INQUIRER*'**

BY
get

GEORGE L. SICHERMAN

GROUP FOR COMPUTER STUDIES OF STRATEGIES

DECEMBER 1981

DEPARTMENTAL TECHNICAL REPORT #193

GCSS TECHNICAL REPORT #5

*THE WORK DESCRIBED HEREIN IS SUPPORTED BY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

,ifo-Sk 81-0220,

**THIS REPORT IS BASED ON THE AUTHOR'S PH.D.

DISSERTATION PROPOSAL SUBMITTED TO THE

FACULTY OF THE DEPARTMENT OF COMPUTERSCIENCE. """"

STATE UNIVERSITY OF NEW YORK AT BUFFAL

*. 0
P.1 Department of Computer Science

-),Approvs for pr," le rq. lp e ;

FFA - 0 8 2 d,-. a i . , tioat~ol.llwtod.

THE ADVICE-TAKER/liQUIRER

j BY

GEORGE L. SICHERMAN

GROUP FOR COMPUTER STUDIES OF STRATEGIES

DECEMBER 1961

DEPARTMENTAL TECHNICAL REPORT #19J'

GCSS TECHNICAL REPORT #5

*THE WORK DESCRIBED HEREIN IS SJUPPORTED BY -af

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

41n81-022U.
**THIS REPORT IS BASED ON THE AUTHOR'S PHD,,

DISSERTATION PROPOSAL SUBMITTED TO THE

FACULTY OF THE DEPARTMENT OF COMPUTER

SCIENCE&

AIRF07 . . (AVSC)
iO TIC:T-

This ." .'d and iS%
,. 193-12%

D'tri tc , : .

MATTHE; J. K, E'ak
Chief, Tecluieal Infonmation Division

-1-NT

1. Introduction.

2. Background and related work.

2.1. Automatic programming.

2.2. The advice-taker.

2.3. The advice-taking chess player.

2.4. Teiresias.

2.5. POO.

3. The advice-taker/inquirer.

3.1. Introduction.

3.2. Initial design.

3.3. Initial implementation.

3.4. Experientialization.

3.5. Mathematical models of advice.

4. References.

Aeoe.s [on ' or _

NTIS YJi
DIIC T"

jil't i-f c .t il . . .

coy i~t.rib',:,!3 !..
ISPECTED2 , Aval!i1'i1tv C::es ..

". n
"SiH i

-2-

1 i m ~

This report describes an intelligent system, the

Advice-Taker/Inauirer. being developed at the State University of

New York at Buffalo (SUNY/AB). Its principal capabilities are:

1. accept expert advice in the form of principles;

2. accept expert advice in the form of examples;

3. make inquiries to the advisor when the advice is vague,
incomplete, or contradictory;

4. apply the advice in the field; and

5. evaluate and adapt its advice on the basis of
experience.

The motivation for such a system is obvious. Many task

environments are so complex that it is impossible or impractical

to specify an effective algorithmic strategy for them. In such

environments the best way to specify a strategy usually is in

terms of principles. The value of being able to use examples is

that a single example may be more instructive than a large number

of principles. The system makes inquiries when it detects

logical problems with the advice, in order that it may not

blindly follow an illogical strategy. Finally, the system

applies and evaluates the advice in order to detect practical

problems with the advice. If the system has access to a system

that simulates the problem domain, it can detect practical

problems before applying the strategy in the real world. This

capability is very desirable from a practical standpoint.

2 .BRakgrjnd A .la±e worLk

-3-

2.1 Automatic programming.

Since the earliest days of computing, programmers have

recognized that the power of the computer might be applied to the

very task of programming. Compilers were the first major

achievement of this kind. (It is worth remembering that FORTRAN

was envisioned as an alternative to programming.) Today

programming languages are not regarded as "automatic programming"

systems, the term being applied instead to systems that construct

programs according to the user's statements about what he wants

to accomplish. See EBIERMANN 1976] for a review of various

automatic programming systems till 1975.

Most such systems are of little use in constructing programs

for artificial intelligence (A), because they are designed to

construct algorithmic programs rather than heuristic ones. The

only examples of Biermann's for AI are (SUMMERS 1975], which

constructs LISP functions for transforming list structures by

example, and Winograd's system [WINOGRAD 1972] for translating

natural language into PLANNER.

2.2 The advice-taker.

The earliest proposal for a system that would accept

heuristic input came from J. McCarthy [McCARTHY 1968]. It

described a program called the Advice-Taker, essentially a

theorem-prover, in which the laws of deduction would be stored in

the same symbolism as the premises. The control structure would

consist merely of a few "hard-programmed" heuristics for ob-

serving and matching patterns. He did not define these

heuristics. The practical interest of the Advice-Taker lay in

its ability to accept heuristics as input, then apply the

-4-

heuristics in processing the data. It was one degree more

flexible than an ordinary program that could process various data

sets but could not vary its processes.

2.3 The advice-taking chess player.

The first significant achievement in automatic advice-taking
was Zobrist and Carlson's advice-taking chess player [ZOBRIST and

CARLSON 1973]. This program accepted heuristics from a chess
master. The communication language devised by the authors was

opaque, but simple enough for the master to learn easily. Each
heuristic described one kind of feature of a position and how to

compute that feature's value. It was generally considered to

play more like a human player than most other chess programs of

its time.

2.4 Teiresias.

The best-known example of a knowledge-refinement system is

Davis's TEIRESIAS [DAVIS 1979], a sophisticated agent for main-
taining and debugging consultation systems such as MYCIN

[SHORTLIFFE and BUCHANAN 1975]. TEIRESIAS can help the user
track down bugs, identify anomalies that might be bugs, describe

the inferential operation of its host program, and identify

situations that are not specifically covered by the advice but

perhaps ought to be.

This naturally requires a high order of generalization and

pattern recognition. Davis's method was to give TEIRESIAS not
only access to the consultation program and its knowledge base,
but also a model of its own knowledge. To Davis a model was "a

k L____ - --

-5-

compact, high-level description of structure, organization, or

content that may be used both to provide a framework for

lower-level processing, and to express expectations about the

world." (p. 140) Davis designed his rule models with a view to

their intended use. Each contained (1) examples of rules

described by the model; (2) a list of more general models; (3) a

list of more specific models; and (4) a description of the rules.
The description would characterize a typical rule, the premise,

the action, typical attributes involved, and correlations of

these attributes. This structure provided an ideal high-level

framework for describing a rule-based consultation system.

TEIRESIAS used natural language, but restricted its use as

much as possible. The program prompted the user to give short

answers whenever possible; long answers were not parsed but

keyword-matched.

2.5 FOO.

The most advanced advice-taker to date is Mostow's FOO

[MOSTOW 1981]. Mostow provided FOO with about 400 rules. About

three hundred related to the two domains he chose (the game of

three-handed Hearts, and composing canti firmi). The remainder

implemented 17 general heuristics for achieving goals. Mostow

called these heuristics operationalization methods.

FOO was not designed to solve every possible problem. Its

operationalization methods were heuristic, subject to failure or

inadequacy. Three examples are:

--If the value of a function must lie in one of several

ranges, and all but one of the ranges have been eliminated,

then it must lie in the remaining range. (Mostow calls this

-6-

the "Pigeonhole Principle.") e.g., if neither you nor your

right-hand opponent holds the Queen of Spades, then your

left-hand opponent must hold it.*

--Achieve a necessary condition for a goal. This may or may

not work. E.g., to take the current trick, play a card that

beats the card led. This is necessary but not sufficient,

since somebody else may play a card that beats yours.

--Use an untested simplifying assumption. E.g., to avoid

taking the Queen of Spades, you may lead an unplayed suit

other than spades on the assumption that the other cards in

the suit are distributed evenly. Though this assumption

sometimes fails, most players would make it routinely.

The power of these methods gives FO0 a high order of

problem-solving ability. Unfortunately, Mostow did not endow FOO

with the knowledge of when to apply which operationalization

methods (p. 345 ff.). It was up to the user to tell FOO when to

use each method. FOO also could not evaluate its heuristics or

modify them in case they failed.

3 2 advice-taker/inquirer.

3.1 Initial design.

An advica-taker/inguirer (AT/I) is an advice-taker that
seeks help from the Advisor in organizing and interpreting the

advice. The concept is due to Findler and was developed within

* Since the game is three-handed.

-7-

the well-known "Poker Project" at SUNY/AB. The earliest proposal

for an AT/I [DIXON 1975] describes it as an interactive tool for

Poker System programmers. This proposal was later elaborated but

never implemented. Some of its features were implemented in

other Poker System projects.

In 1978 S. G. Feuerstein and I took up the AT/I project.

Believing that a pure tree structure would be inconvenient for

the Advisor, we proposed in its place [SICHERMAN 1978] a collec-

tion of linked lists of principles. Each principle would have

the form "If <condition> then <action>", where <action> was

either a Poker action or a jump to another list. Lists were

called sequences. The AT/I would try all the principles of a

sequence in order until it found one whose condition held. Thus

each sequence was equivalent to a statement of the form "If C1
then A1 else if C2 then A2 else . . . ". In this way the

pattern-identifying component resembled that of a production

system with a fixed priority of rules, while the organization was

strictly algorithmic. Sequences were not to jump to one another

recursively.

The formal syntax of an AT/I strategy was [FINDLER et alj__

1979, p. 459]:

sequence <=> <label> (I <principle>]+

label <=> {<character>}+

principle <=> (<variable> {<rop> <variable>) {<bop> <variable>

{<rop> <variable>}+) : <action> (<modifier>)

variable <=> <simple variable> ((<index>)} I <function> I

<constant>

index <=> <variable>

function <=> <domain-specific function>

simple variable <=> <environmental variable>

constant <=> <integer> I <real> I <boolean constant>

rop <=> # i = I < I > I < I >

-S-

bop <=> AND I OR

action <=>. GOTO I <environmental action>

modifier <=> <variable>

*Explanation of notation:

{<item>) means that <item> is optional;

{<item>)+ means that <item> occurs one or more times.

We also announced explicitly what we wanted the AT/I to be

able to do [FEUERSTEIN and SICHERMAN 1978]. In doing so we
defined "advice" more broadly than usual. The Advisor should be

able to issue (Al) definitions, including computational ones;

(A2) rules, as described above; (A3) examples, which were like
rules but were to be applied by analogy; (A4) inquiries about

strategy, meanings of terms, current statistical valaes, etc.;

(A5) orders, to override the strategy. The AT/I should be able
to (BI) recognize undefined terms and ask the Advisor to define

them; (B2) complain about inconsistent advice; (B3) interpret

hypothetical deviations from the current game situation; (B4)

illustrate its inquiries by constructing examples and presenting

them to the Advisor; (BS) save and retrieve its strategy.

Powers Al through A4 were to be invoked while the AT/I was

not acting in its domain. Power A5 differed from them in being

invoked while the AT/I was acting in its domain; instead of

refining its strategy, the AT/I was to ignore it temporarily.

To illustrate these capabilities, here is a hypothetical

dialogue on the subject of poker:

-9-

ADVISOR: If your opponent is a cowboy, bluff often. (A2)
AT/I: What is a cowboy? (BI)

ADV.: A cowboy is a player who usually draws to a four-flush.

(Al)

AT/I: You said earlier, never to bluff against a beginner.
What if the cowboy is a beginner? (B2)

ADV.: Don't bluff. (A2)

AT/I: I can think of another class of situations. For

example, suppose you are in first position, above a cowboy,
and he has been winning steadily, and he won the previous
pot. Your previous advice says don't bluff. (B4)

ADV.: Right. Don't bluff. But suppose you are the dealer in

that situation, then you ought to bluff. (A3) Now save
your advice on file 'X", and retrieve the advice on file
"Y". (B5)

AT/I: O.K.

ADV.: Now play 10 games of poker.

ADV.: Is the opponent on your left a beginner? (A4)

AT/I: Yes, according to your definition.

ADV.: What would you have done if he had raised you?

AT/I: Raised him back. (B3)

ADV.: If he opens the next hand, I want you to call him. (A5)

3.2 Implementation.

By the end of summer 1978 we had a program. It was written

partly in CDC assembly language (COMPASS) and partly in FORTRAN

IV, using the SLIP package for list structures. The coding of
the data structures relied heavily on enumeration constants and
bit fields. The program had four parts [FEUERSTEIN 1978]: the

interactive communication with the Poker System, which Feuerstein

adapted from the existing multi-teletype communication routines

-10-

[SICHERMAN 1977]; the cont:troll which supervised the AT/I's

submodules; the human interface, or kr and the rule

follower, or e u For an overview of the first imple-

mentation and early results see [FINDLER _Q±t- al. 1979]. A few

details are given here.

The original proposal called for natural-language communi-

cation, though with a small vocabulary. Instead we implemented

formal-language communication. Later we abandoned the idea of

natural language altogether, because it would have been

formidable to program (especially in FORTRAN), perhaps not the

most efficient form of communication, and not significant for the

project. (See also Davis's arguments against natural-language

parsing [DAVIS 1979, p. 128].)

The Advisor could define and display sequences but not alter

them.

The flow of information and the control structure of the

eventual design for the AT/I are shown in Figures 1 and 2.

HUMLAR CONTROLLER COMMUNICATION

ADVISOR F o i i ROUTINES

: LANGUGE DI TOR EXECUTO R

Figure 1. Flow of information in the AT/I.

-Ii-

HUANR J INTERRUP CONROLE CMICTO
AVISR J NG I I GROINE

Figure 2. Flow of control in the AT/I.

3.3 Design goals.

DOMAIN

We propose to develop an advice-taking system that can

1. ask intelligent questions to resolve apparent contradic-tions, omissions, or uncertainties in the advice;

2. understand examples, and prepare its own examples to
illustrate its s rategy;

3. exrientializ Pits advice; 2ze. adapt its strategy ac-
cording to its experience with using it.

The first two capabilities were originally proposed for the

Advice-Taker/Inquirer [FINDLER et al..- 1979], which has been

partially implemented as described above. The third is new. So

far as I know, there are no intelligent systems that learn both 4
from an Advisor, as does FOO, and from experience, as does HACKER

[SUSSMAN 1974].

-12-

I propose also to

(4) develop a mathematical model of advice-taking, with a

view to obtaining measures of the power and reliability

of advice-taking systems.

3.3.1 Originally proposed work.

The NOS-FORTRAN-SLIP environment does not facilitate inter-

active programming. If anything, it hinders it. I therefore

propose to write the AT/I in a more hospitable language, probably

either LISP or a LISP-imbedded language such as ROSIE [GORLIN .t_

A.l 1981A; GORLIN et al 1981B; GORLIN eL__al__1981C]. I will

adapt as much of the existing FORTRAN code as is worth keeping.

The next step will be to implement as many of the AT/I's

intended capabilities as prove feasible. At the least, the AT/I

must be able to accept and use definitions of new terms, and the

Advisor must be able to describe and rearrange parts of the

strategy. Automatic classification of actors, such as was done

by the Player-Type System [MORGADO and MARTINS 1978] in the

SUNY/AB Poker System, can proably be implemented through the

Definition Manager [FINDLER .t.al.1979]. It should be routine

to give the Advisor broad powers of inquiry.

3.3.2 Domains of application.

The original domain of application for the AT/I was the

SUNY/AB Poker System [FINDLER gt ajl._972; FINDLER 1977; FINDLER

1978]. For my thesis I intend to use the domain of automatic Air

Traffic Control (ATC), whose tasks are complex enough to be

-13-

challenging and can be kept simple enough to be manageable. The

problem of automating ATC has been studied extensively in the

last three or four years [WESSON 1977A; WESSON 1977B; RUCKER

1979; GOLDMUNTZ et al,19811 and is obviously important in its

own right.

A second domain, one unlike ATC, will also be used, mainly

to establish that the AT/I is reasonably domain-independent.

3.3.3 Benefits and possible uses.

Some potential benefits of using an AT/I are:

(1) By expressing his strategy formally, the Advisor may come to

understand it better.
(2) The AT/I can point out inconsistencies, ambiguities, and

other logical problems with the strategy.

(3) The AT/I can find and help to correct practical problems

with the strategy.

These observations suggest some possible uses of an AT/I.

Training.,- An AT/I can be used to train or retrain experts.

Automation. Having absorbed the expert's knowledge, an AT/I

can act in his place.

Tting, The AT/I can devise simulations that test a

strategy in many ways.

Development. The AT/I can be used in forming, debugging,

maintaining, and improving strategies.

-14-

S An AT/I, working with a system that analyzes
several alternative strategies for the same goal and develops a

strategy with the best features of each, such as that described

in EFINDLER and Van LEEUWEN 1979], could learn from several

Advisors and produce a system that outdoes them all.

3.4 Experientialization.

3.4.1 Introduction.

Previous research in automatic advice-taking has focused on

problems of operationalization; i.e., of organizing and applying

knowledge to accomplish goals. The user must decide how well the
resulting agent performs, and what to do if it performs unsatis-

factorily. (TEIRESIAS s £ts-this process very well but cannot

direct it.)

Let exverientialization denote the process by which an

advice-taking program refines its advice on the basis of

experience. This is a highly significant open problem in AI In

an era of limited computer-skilled manpower, the practical value

of self-correcting educable systems is inestimable.

To experientialize, the program must determine what to

refine and how. For example, it may refine

rules that fail (by fixing them);

rules that succeed (by forming more general, more specific, or

analogous rules);

rules that appear to be critical, though it be hard to judge

their soundness.

-15-

In the process of refining it may

1. ask the Advisor for help;
2. try various changes in the strategy and test them by

simulating the environment;

3. form new concepts to replace old ones.

3.4.2 Cognitive processes in experientialization.

To experientialize advice requires three processes: obser-
vation, organization, and assimilation. These processes

naturally tend to influence one another, but a system is most

likely to be powerful if it distinguishes them clearly.*

Observation. The AT/I must be able to observe and record

what happens in the environment. To obtain this information it

may make its own measurements, or ask the Advisor or a third

party. It may have to commit resources to this task, or even

devise a strategy for it.

Organization. The AT/I must keep the size of its stored

experience low enough to be manageable, and must be able to
derive information that it can use to reach its goal. The

natural tools for this process are statistical analysis and pat-
tern recognition. Pattern recognition may involve forming new

concepts, to supplement those defined by the Advisor.

Assimilation. The AT/I must check its strategy against its

experience and take action accordingly. The nature of the

actions will depend on whether the environment is cooperative,

competitive, or neutral; but their forms can be classified as

* See [PERLS 21-a_1951] for a discussion of this principle in
human cognition.

L

-16-

follows:

Qu hootting, This means identifying sources of
failure and fixing them. This is the meaning of "knowledge

refinement" as used by Hayes-Roth &t a. [HAYES-ROTH eal .
19801. Some troubleshooting methods are: consulting the

Advisor; simulation; credit assignment; aggression; diplo-

macy.

Reinforcement. When the strategy succeeds, the AT/I

should be encouraged to "appreciate" the causes of its
success; i.e., to find new applications and variants of them.

As is well known, this is not an easy process to implement.
The early history of programmed reinforcement is cratered

with failures.

Di ry. This refers to the process of forming new,
relevant concepts without immediate regard for the AT/I's
goals. It eventually incorporates them or discards them

according to some heuristic for measuring relevance.

Dazne.aItiona. When the AT/I fails, it may do so because
at the advice or in sqiteoL-it; that is, because the advice
is simply inadequate for the task. The AT/I should recognize

when it is failing in spite of the advice and, perhaps with
the Advisor's help, develop radically new concepts and

techniques to deal with the problem.

3.4.3 Methods of experientialization.

If the AT/I's strategy is composed of rules of the form "to
accomplish A in situation B, do C", then it has an obvious way to
compare its strategy with its experience: just count how often

-17-

each rule succeeds and fails. The results can be applied

immediately to credit assignment. Perhaps because of its lack of

glamor, this statistical method, while common in other areas of

computer science, is rare in artificial intelligence.

This method may not be sufficient. The AT/I may not be able

to observe whether B holds, or A is indeed accomplished, or even

whether it succeeded in doing C. Even if the method were

sufficient, it would hardly solve the problem of experientializa-

tion. The AT/I needs a battery of heuristics, somewhat like

FOO's battery of operationalization heuristics, to transform its

experience into action. I cannot say what these heuristics will

be like. They will have to be discovered by experiment. Most of

them will involve cooperation between the Advisor and the AT/I.

3.4.4 Testing by experientialization.

If an AT/I is to be used in the field, it must be tested

thoroughly. Ideally it should encounter every possible

situation, so as to discover every possible failure. In practice

this can seldom be done. It is a sad truism in systems program-

ming that complex systems cannot be completely debugged. The

main reason is that the possible situations are too numerous to

generate artificially, and reality generates them with widely

varying frequencies.

But it is possible to generate a large number of different

situations to test the AT/I. This will not ensure that the

AT/I's strategy is perfectly sound, but it may verify that the

strategy is sound enough for all practical purposes.

I 7

-18-

3.5 Mathematical models of advice.

Define an interactive enyirgnmentas a system of equations

Yi= fi(t,xl,...,xm,yl,...rynrzl,...,zp) (1 i K n);
Zi gi(t,xl,...,xmYl,...,yn,zl,...,z p) (I< iK <p).

The variable t represents time. The values of the variables

xl,.xm are set by the user. The functions fi and gi describe

how the environment behaves; they may express complicated logical

conditions as well as numerical functions. The variables

Yl,...,yn are m the variables Zl,...,zp are not.

Partial measurability can be expressed in this model. For
example, suppose that zk takes values 0.0 < zk S 1.0 and is

observable only when zk < 0.5. The corresponding measurable

variable yj is defined by

yj zk if zk < 0.5;

= t"unknown" otherwise.

Likewise, loss of precision and loss of accuracy can be expressed

by equations like

0.0 if 0 < Zk < 0.05;

yj 0 i 005 zk < 0.10;

1.0 if 0.95 < zk S 1.00

and

Yj = zk + cze
where ze represents a source of error.

I

-19-

This model does not account for events that are random:
i.e., whose values cannot be determined from other quantities.*

We can extend the model to allow random events by simply allowing

the functions fi and gi to take random variates as arguments:

Yi = fi(txl,...,xmyl,...,yn, zl,...,zpr) (1< i < n);
zi r gi(txl,...,xmYl,...,ynzl_,...,zp,r) < i._ p).

We can view the xi as being .inputsto the environment and

the Yi as outputs. An aco is an entity that seeks to control

the Yi by regulating the xi.

Define a pureinteact i strategy as a system of functions

wi = di(twl,...,wlXl,...,XmFYyl,...,yn) (I -,' i K_ 1)

Xi = ei(t,wl,...,wl,xl,...,xmyl,...,yn) (I < i < m).

The wi are the actor's internal variables, the xi are his
actions in the environment, and the Yi are his observations.

Define a mixed inteactive strategy by allowing random variates

for arguments:

wi = di(t,wl,...,wlxl,...,xmyl,...,yn,r) (1 i 1 1);

xi = ei(t,wl,...,wl,xl,...,xmYl,...,yn,r) (i <m).

A strategy and an environment are symmetrical, as can be

seen from their forms. Together they form a closed system.

The anlyticcotlp/_ is: given an environment (fg),

to find a strategy (de) that will maximize a given function

6 (ty).

This definition is necessarily imprecise because randomness is
not an absolute concept. It can be joint or relative, as in
the Heisenberg Uncertainty Principle.

1A

-20-

If 6 is boolean-valued, this amounts to achieving a

condition. The presence of the variable t means that the problem

may be to maximize a function or achieve a condition over time.

This formulation of the problem assumes that the functions

fi and gi are known. In practice they are often known
imperfectly or not at all; and even if their behavior is

familiar, it may be too complex to be described completely.* We
therefore assume that the actor's knowledge of the environment is

based on experience. This experience need not be the actor's

own. It may be the experience of one or many others,

communicated by an Adyiggr,

Of course, not all that can be communicated is experience.

The properties of a communication that are relevant in modeling

advice-taking are: immediacy, noise, and community of interest.

By immediacy I mean the freshness of the Advisor's

knowledge. This is affected by s gerxg(i.e., deteri-

oration) and dir_ oL. ei jif The Advisor is more

reliable when relating what he saw than when repeating what he
was told.

Transmission noise includes the Advisor's mistakes in

describing his knowledge, translating it, expressing it, and the

system's mistakes in receiving it, translating it, and inter-

preting it.

Community of interest means that the goal towards which the

system intends to apply its knowledge is also a goal of the

Advisor. When this is not so, the communication may contain

unreliable or misleading information.

* An example is the rules for resolving kogin the game of go.

-21-

4 -Bee..ences

[BIERMANN 1976] Biermann, A. W., "Approaches to automatic
programming." In Aae in_ Compterse v. 15 (1976), pp.

1-63.

[DAVIS 1979] Davis, R., "Interactive transfer of expertise:

acquisition of new inference rules." Artificial-
Intelligence, v. 12 (1979), pp. 121-157.

[DIXON 1975] Dixon, R., "The interactive advice taking program."

Memo. no. 36, SUNY/AB Poker Group (1975).

[FEUERSTEIN 1978] Feuerstein, S. G., "The AT/I system." Memo.

no. 174, SUNY/AB Poker Group (1978).

[FEUERSTEIN and SICHERMAN 1978] Feuerstein, S. G., and Sicherman,
G. L., "Work proposed for the summer on the AT/I." Memo. no.
166, SUNY/AB Poker Group (1978). Memo. no. 102, SUNY/AB Poker

Group (1976).

[FINDLER 1977] Findler, N. V., "Studies in machine cognition

using the game of Poker." Cmm, A-II v. 20 (1977), pp.

230-245.

[FINDLER 1978] Findler, N. V., "Computer poker." Scie_ iiac

American, v. 239 (1978), pp. 144-151.

[FINDLER Pt al. 1972] Findler, N. V., Klein, H., Gould, W.,
Kowal, A., and Menig, J., "Studies on decision making using

the game of Poker." In P IFPCg I971 (1972), pp.

1448-1459.

-22-

[FINDLER and Van LEEUWEN 1979] Findler, N. V., and van Leeuwen,

J., "On the complexity of decision trees, the quasi-

optimizer, and the power of heuristic rules." information ani.-
cont.rolJ, v. 40 (1979), pp. 1-19.

IFINDLER #taL-,jL979] Findler, N. V., Sicherman, G. L., and Feu-

erstein, S. G., "Teaching strategies to an Advice-Taker/In-

quirer System." Proc En~_If.LT.79_(l979), pp. 457-465.

IGOLDMrJNTZ eL.aLj981) Goldmuntz, L., Kefaliotis, J. T., Weath-

ers, D.# Kleiman, L. A., Rucker, R. A., and Schuchman, L.,

"The AERA concept." 1981.

[GORLINp-et-...a,.1981A] Gorlin, 1). M. eiLalb. "Programming in

ROSIE: an introduction by means of example." Report N-1646,

Rand Corp., 1981.

[GORLIN .e..LaL.,1981B] Gorlin, D. M. etal, "The ROSIE language

reference manual." Report N-1647, Rand Corp., 1981.

* [GORLIN mk~aL.1981C] Gorlin, D. M. etal... "Rationale and

motivation for ROSIE." Report N-1648, Rand Corp., 1981.

[HAYES-ROTH at-aI.,_19BO] Hayes-Roth, F., Klahr, P., and Mostow,

D. J., "Knowledge acquisition, knowledge programming, and

knowledge refinement." Report R-2540, Rand Corp., 1980.

[McCARTHY 1968] McCarthy, J., "Programs with common sense." In

Minsky, M. (ed.), Semantic-.InformationLP_&ae,,ssing L(1968), pp.

403-417.

(MORGADO and MARTINS 1978] Morgado, E. J. M., and Martins, J. E.

P., "User-defined player types." In Prieur, J. R., Morgado,

E. J. N., Martins, J. E. P., and Findler,. N. V., Lsexz1Giik

MEE: - --

-23-

tlig Pokehr SysemVoum TTT:in ILL. nia pn ±jhg fnkyl

Tournam.ei Mode, 2nd ed. Tech. manual no. 5, SUNY/AB Poker

Group, 1978.

[MOSTOW 1981] Mostow, D. J., "Mechanical transformation of task

heuristics into operational procedures." Ph.D. thesis,

Carnegie-Mellon Univ., 1981.

[PERLS etLaI._1951] Perls, F. S., Hefferline, R. F., and Goodman,
P. , Getl The rapy- Exg.itee and- Grgwt in__tb2e_H an._

Personality. N.Y., Julian, 1951.

[RUCKER 1979] Rucker, R. A., "Automated en route ATC (AERA):

Operational concepts, Package 1 description, and issues."

1979.

[SHORTLIFFE and BUCHANAN 1975] Shortliffe, E. H., and Buchanan,

B. G., "A model of inexact reasoning in medicine." Mathe-

matical D-iosciences. v. 23 (1975), pp. 351-379.

[SICHERMAN 1977] Sicherman, G. L., "New communication routines:

level 1 documentation." In Menig, J., Findler, N. V. geta2__

UesG~i !tthg P _Sy __3rd ed., Tech. manual no.

1, SUNY/AB Poker Group, 1978, App. E.

[SICHERMAN 1978] Sicherman, G. L., "Progress in the advice-

taker/inquirer design." Memo. no. 159, SUNY/AB Poker Group

(1978).

[SUMMERS 1975] Summers, P. D., "A methodology for LISP program

construction from examples." P 3zdACM Pl Pro_.-

Lang. (1975), p. 68.

(SUSSMAN 197.4] Sussman, G. J., A_C.piutgexjondjLoL_ Skil.L_ -

-24-

sitipL N.Y., Amer. Elsevier, 1974.

[WESSON 1977A] Wesson, R. B., "Planning in the world of the air

traffic controller." Proc. 5th_ Intern, J±.. CnfLAX±_ti

Int 1977.

[WESSON 1977B] Wesson, R. B., "Problem-solving with simulation in

the world of an air traffic controller." Ph.D. thesis, Univ.

of Texas at Austin, 1977.

[WINOGRAD 1972] Winograd, T., Understanding NtjA_ Lzngg,_

Academic Press, 1972.

[ZOBRIST and CARLSON 1973] Zobrist, A. L., and Carlson, F. R.

Jr., "An advice-taking chess computer." Scientific American.

v. 228 (1973), pp. 92-105.

.'- I

giqE

